BOKASUN: A fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams

نویسندگان

  • Michele Caffo
  • Henryk Czyz
  • Michal Gunia
  • Ettore Remiddi
چکیده

We present the program BOKASUN for fast and precise evaluation of the Master Integrals of the two-loop self-mass sunrise diagram for arbitrary values of the internal masses and the external four-momentum. We use a combination of two methods: a Bernoulli accelerated series expansion and a Runge-Kutta numerical solution of a system of linear differential equations. PACS: 11.15.Bt

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precise numerical evaluation of the two loop sunrise graph Master Integrals in the equal mass case

We present a double precision routine in Fortran for the precise and fast numerical evaluation of the two Master Integrals (MIs) of the equal mass two-loop sunrise graph for arbitrary momentum transfer in d = 2 and d = 4 dimensions. The routine implements the accelerated power series expansions obtained by solving the corresponding differential equations for the MIs at their singular points. Wi...

متن کامل

Numerical evaluation of the general massive 2 - loop sunrise self - mass master integrals from differential equations

The system of 4 differential equations in the external invariant satisfied by the 4 master integrals of the general massive 2-loop sunrise self-mass diagram is solved by the Runge-Kutta method in the complex plane. The method, whose features are discussed in details, offers a reliable and robust approach to the direct and precise numerical evaluation of Feynman graph integrals. ——————————PACS 1...

متن کامل

ar X iv : h ep - p h / 02 11 17 8 v 1 1 2 N ov 2 00 2 1 Numerical evaluation of master integrals from differential equations ∗

The 4-th order Runge-Kutta method in the complex plane is proposed for numerically advancing the solutions of a system of first order differential equations in one external invariant satisfied by the master integrals related to a Feynman graph. The particular case of the general massive 2-loop sunrise self-mass diagram is analyzed. The method offers a reliable and robust approach to the direct ...

متن کامل

Laurent Series Expansion of Sunrise-type Diagrams Using Configuration Space Techniques *

We show that configuration space techniques can be used to efficiently calculate the complete Laurent series ε-expansion of sunrise-type diagrams to any loop order in D-dimensional space-time for any external momentum and for arbitrary mass configurations. For negative powers of ε the results are obtained in analytical form. For positive powers of ε including the finite ε 0 contribution the res...

متن کامل

golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs

Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs Abstract We present a program for the numerical evaluation of form factors entering the calculation of one-loop amplitudes with up to six external legs. The program is written in Fortran95 and performs the reduction to a certain set of basis integrals numerically, using a formalism where inverse Gra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 180  شماره 

صفحات  -

تاریخ انتشار 2009